[image: image4.png]

Philadelphia University
 Faculty of Information Technology

Lecturer: Dr. Rawan Abu Lail

 Department of CS

Internal Examiner: Dr. Raad Alwan

 Marking Schem
Module Name: Operating System First Exam Semester One
Module Number: 750333 20/11/2014

Q1/ (6 marks) Answer the following MCQs and then explain why your answer is correct for each of the following:
1) The state of a process after it encounters an I/O instruction is __________.
1 Ready
2 Waiting
3 Idle
4 Running
Right Ans) 2

2) In the running state
1 only the process which has control of the processor is found
2 all the processes waiting for I/O to be completed are found
3 all the processes waiting for the processor are found
4 none of the above
Right Ans) 1

3) The kernel of the operating system remains in the primary memory because ________.
1 It is mostly called (used)
2 It manages all interrupt calls
3 It controls all operations in process
4 It is low level
Right Ans) 1

4) The degree of Multiprogramming is controlled by
1 CPU Scheduler
2 Context Switching
3 Long-term Scheduler
4 Medium term Scheduler
Right Ans) 3

5) In a multithreaded environment _______.
1 Each thread is allocated with new memory from main memory.
2 Main thread terminates after the termination of child threads.
3 Every process can have only one thread.
4 None of the above
Right Ans) 2

6) Saving the state of the old process and loading the saved state of the new process is called ________.
1 Context Switch
2 State
3 Multi programming
4 None of the above
Right Ans) 1

Q2/(6 marks) Assume we have a single process in execution, the body of process includes 6 instructions using different I/O devices shown in the following:
	Instruction number
	Process's Instructions
	Burst Time

	1
	LoadImage X; //form hard disk
	2

	2
	If(X.Format == RGB) {
	2

	3
	 ShowImage (X); // on screen
	4

	4
	Else if (X.Format== JPG) {
	3

	5
	 Print(X); } //on LP (laser printer)
	4

	6
	 Else SaveImage(X); //into hard disk
	2

Draw time analysis to show the control flow of CPU statuses (idle, user mode, I/O mode) with all steps of the hardware interrupt for each I/O.

[image: image1.png]0 1.2 3 4 5 6 7 8 9 1011 12131415 16 17 18

CPUidle

User Mode

1/0 Mode

LoadImage X,

T X Format — RGB) {
Hard disk idle

w|1o]—

ShowImage (X),

Hard disk busy

Screenidle

Screen busy

LP idle

LP busy

[image: image2.png]0 1.2 3 4 5 6 7 8 g 1011 1213 14 15 16 17 18 19 20

CPU idle —

User Mode

1/0 Mode

LoadImage X,

Hard disk idle

Hard disk busy

PSR-

Else if (X, Format:

JPG)

fon

Print(X),

}

Screenidle

Screen busy

LPidle

LP busy

[image: image3.png]0 1.2 3 4 5 6 7 8 g 1011 12131415 16 17 18 -

CPUidle

User Mode

1/0 Mode

Hard disk idle

LoadImage

Hard disk busy

If(X Format

RGB) (

Else

F (X Fotmat— JPG) {

Screenidle

Else

elmage(X),

Screen busy

LPidle

LP busy

Q3/(8 marks)

In producer and consumer processes working on the share buffer, write pseudo code for each of the following requirements:

1- Using unbounded buffer such that producer produces 3 elements then consumer consumes 2 elements for each round. This process is repeated unlimited times.

	Void Producer() {

Int [] buffer = new int[10000];

Bool flg=false;

Int in=0;

while (true) {

 while (flg) ;
 WritingToBuff(buffer, &in) ;

 Flg=true;
 }

}
	Void Consumer() {

 Int out=0;

 while (true) {

 while (! flg) ;

 ReadingTwo(buffer, &out) ;

 Flg=false;

 }

}

System call function

Void WritingToBuff(int [] buffer, int * in1) {

 Int count=0

 While(count %3 != 0) {

 Buffer[in1]=nextproduced;

 in1=in1+1;
 count++;

 }

}

System call function

Void ReadingFromBuff(int [] buffer, int * out1) {

 nextConsumed=buffer[out1];

 out=out+1;

 }

}

2- Using bounded buffer with size 10 integer numbers. Where producer write element to buffer from right to left while consumer read element from left to right.

	Void Producer() {

Int [] buffer = new int[10];

Bool flg=false;

while (true) {

 while (flg) ;

 FullBuffer(buffer);

 flg=true;

 }

}
	Void Consumer() {

 while (true) {

 while (! flg) ;

 ClearBuffer(buffer);

 Flg=false;

 }

}

System call function

Void FullBuffer(int [] buffer) {

 Int in=0;
 Int index;

 While(in<10) {
 Index=9-in
 Buffer[index]=nextproduced;

 In++;

 }

}

Void ClearBuffer(int [] buffer) {

 Int out=0;

 While(out<10) {

 nextConsumed=buffer[out];

 out++;

 }
}
